Inhibition of murine leukemia virus envelope protein (env) processing by intracellular expression of the env N-terminal heptad repeat region.

نویسندگان

  • Wu Ou
  • Jonathan Silver
چکیده

A conserved structural motif in the envelope proteins of several viruses consists of an N-terminal, alpha-helical, trimerization domain and a C-terminal region that refolds during fusion to bind the N-helix trimer. Interaction between the N and C regions is believed to pull viral and target membranes together in a crucial step during membrane fusion. For several viruses with type I fusion proteins, C regions pack as alpha-helices in the grooves between N-helix monomers, and exogenously added N- and C-region peptides block fusion by inhibiting the formation of the six-helix bundle. For other viruses, including influenza virus and murine leukemia virus (MLV), there is no evidence for comparably extended C-region alpha-helices, although a short, non-alpha-helical interaction structure has been reported for influenza virus. We tested candidate N-helix and C-region peptides from MLV for their ability to inhibit cell fusion but found no inhibitory activity. In contrast, intracellular expression of the MLV N-helix inhibited fusion by efficiently blocking proteolytic processing and intracellular transport of the envelope protein. The results highlight another mechanism by which the N-helix peptides can inhibit fusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic inhibition of HIV-1 envelope-mediated membrane fusion by inhibitors targeting the N and C-terminal heptad repeats of gp41.

The human immunodeficiency virus type-1 (HIV-1) envelope (Env) proteins that mediate membrane fusion represent a major target for the development of new AIDS therapies. Three classes of Env-mediated membrane fusion inhibitors have been described that specifically target the pre-hairpin intermediate conformation of gp41. Class 2 inhibitors bind to the C-terminal heptad repeat (C-HR) of gp41. The...

متن کامل

Temperature-dependent intermediates in HIV-1 envelope glycoprotein-mediated fusion revealed by inhibitors that target N- and C-terminal helical regions of HIV-1 gp41.

Peptides derived from the N- (N-HR) and C- (C-HR) terminal heptad repeat regions adjacent to the fusion peptide and transmembrane domains, respectively, of human immunodeficiency virus (HIV)-1 gp41 inhibit HIV-1 viral envelope glycoproteins (Env)-mediated cell fusion specifically. The mechanism of HIV-1 Env-mediated cell fusion and its inhibition by agents that target the N- and C-HR regions wa...

متن کامل

Molecular analysis of the envelope gene and long terminal repeat of Friend mink cell focus-inducing virus: implications for the functions of these sequences.

We sequenced the envelope (env) gene and 3' long terminal repeat of a Friend mink cell focus-inducing virus (F-MCFV). We also sequenced the gp70 coding regions for two cDNA clones of another F-MCFV. The deduced amino acid sequence of the env gene products of both F-MCFVs were compared to the corresponding sequences of other MCFVs and of ecotropic viruses. The env polypeptides of the different v...

متن کامل

Splicing of Friend Murine Leukemia Virus env-mRNA Enhances Its Ability to Form Polysomes

Friend murine leukemia virus (MLV) belongs to the gamma retroviruses of the Retroviridae family. The positive-sense RNA of its genome contains a 5' long terminal repeat (LTR), 5' leader sequence, gag, pol, env, and 3' LTR. Transcription from proviral DNA begins from the R region of the 5' LTR and ends at the polyadenylation signal located at the R region of the other end of the 3' LTR. There is...

متن کامل

Murine MusD retrotransposon: structure and molecular evolution of an "intracellularized" retrovirus.

We had previously identified active autonomous copies of the MusD long terminal repeat-retrotransposon family, which have retained transpositional activity. These elements are closely related to betaretroviruses but lack an envelope (env) gene. Here we show that these elements encode strictly intracellular virus-like particles that can unambiguously be identified by electron microscopy. We demo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 79 8  شماره 

صفحات  -

تاریخ انتشار 2005